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Abstract
Primary focal and segmental glomerulosclerosis (FSGS) 
may be due to genetic or acquired etiologies and is a 
common cause of nephrotic syndrome with high morbid-
ity that often leads to end-stage renal failure. The differ-
ent available therapeutic approaches are unsuccessful, in 
part due to partially deciphered heterogeneous and com-
plex pathophysiological mechanisms. Moreover, the term 
FSGS, even in its primary form, comprises a histological 
description shared by a number of different causes with 
completely different molecular pathways of disease. This 
review focuses on the latest developments regarding 
the pathophysiology of primary acquired FSGS caused 
by soluble factor urokinase type plasminogen activa-
tor receptor, a circulating permeability factor involved in 
proteinuria and edema formation, and describes recent 
advances with potential success in therapy.

© 2013 Baishideng Publishing Group Co., Limited. All rights 

reserved.
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Core tip: Primary acquired focal and segmental glomer-
ulosclerosis is a frequent cause of nephrotic syndrome 
with no specific treatment. New discoveries in its patho-
physiolohy have revealed that a podocyte permeability 
factor named soluble urokinase plasminogen activator 
receptor (suPAR) may be involved in the development 
of proteinuria and edema formation. This effect is sup-
posed to be achieved by its interaction with podocyte 
integrins and subsequent cell contraction. Moreover, 
suPAR also activates water and sodium retention in this 
disease. Interestingly, plasmin mediates both effects. 
Amiloride is postulated to interfere with suPAR protein-
uric actions.
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INTRODUCTION
Focal and segmental glomerulosclerosis (FSGS) is a 
major cause of  chronic kidney disease in children and 
adults[1-3]. It can occur as a primary disorder (called pri-
mary acquired FSGS), as a consequence of  genetic muta-
tions in podocyte-specific proteins (also called primary 
genetic FSGS) or as a secondary disorder[4,5]. In recent 
years, much of  the progress obtained in unraveling the 
pathophysiological events in FSGS has been focused 
primarily on the identification of  genetic mutations 
of  membrane and podocyte slit diaphragm proteins 
and on immune factors, but the real identity of  the 
primary acquired variant apparently caused by circulating 
permeability factors remains elusive. In this regard, the 
role of  these permeability factors in the pathogenesis 
of  proteinuria has also shown progress in recent years. 
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The soluble factor urokinase type plasminogen activator 
receptor (suPAR) has become one of  the most studied 
permeability factors with potential involvements in FSGS. 
It is supposed to be responsible for the contraction 
of  podocytes and its eventual detachment from the 
glomerular basement membrane, denuding it and causing 
proteinuria in the majority of  primary acquired cases of  
FSGS[6]. However, this phenomenon is not shared by 
others, who question whether elevated levels of  suPAR 
are indeed pathogenic, or just a mere marker of  a split 
urokinase-type plasminogen activator (uPAR) (CD87) 
molecule. Moreover, in other clinical situations in which 
suPAR is elevated, proteinuria does not occur[7-9]. It is not 
a specific marker of  FSGS, as in other glomerulopathies 
suPAR levels are also high; in addition, after FSGS post-
transplant recurrence elevated suPAR levels are not 
always encountered[7-9]. Finally some authors state that is 
not the plasmatic but the urinary presence of  suPAR the 
real culprit of  primary acquired FSGS[9].

Biological aspects of uPAR and suPAR
Urokinase receptors, expressed on the cell surface of  
various cells, are committed to the pericellular proteolysis 
of  plasminogen, are essential for the remodeling of  the 
extracellular matrix, and are involved in vasculogenesis 
and cell migration processes[10]. The urokinase receptor, 
also known as uPAR (urokinase-type plasminogen 
activator) is a membrane bound protein linked to glycosy
lphosphatidylinositol (GPI) of  about 45-55 kDa (Figure 
1)[10,11]. UPAR consists of  three domains (DⅠ, DⅡ and D
Ⅲ) and is present in various immunologically active cells, 
including monocytes, macrophages and activated T cells, 
and also in endothelial cells, keratinocytes, fibroblasts, 
smooth muscle cells, megakaryocytes, certain cells tumor, 
podocytes and renal tubular cells[12-18]. It therefore follows 
that suPAR is not a specific marker, although in the 

context of  high circulating levels in a nephrotic patient 
with FSGS, it suggests a leading role as a permeability 
factor[8]. UPAR can be cleaved not only at the portion 
of  the GPI-anchored protein to the cell membrane, but 
also in the inner part of  the receptor itself  (for example, 
in the connection region between DI and DⅡ-Ⅲ), giving 
rise to various soluble forms of  suPAR with different 
molecular weights (Figure 1). The most common form of  
soluble suPAR originates from the cleavage and release 
of  membrane-bound uPAR, detaching the membrane 
anchoring compound GPI, and is present in plasma, 
urine and cerebrospinal fluid in different concentrations 
depending on the level of  activation of  the immune 
system[19-22] (Figure 1). It has also been documented the 
existence of  the whole molecule of  suPAR in serum 
from healthy individuals and of  two truncated soluble 
forms of  the entire molecule (suPARI and suPARⅡ-Ⅲ) in 
the urine[23] (Figure 1).

Physiology of uPAR and suPAR
UPAR can be activated by various molecules, such 
as uPA (urokinase-type plasminogen activator, or 
simply urokinase), plasminogen, chymotrypsin, various 
metalloproteinases and some elastases[24-27]. Studies 
are generally based on the action of  these molecules 
on the uPAR, but as SuPAR barely shares the same 
structure as uPAR, these proteases are also likely to 
cleave suPAR fragments. Furthermore, once activated, 
suPAR or uPAR are capable of  catalyzing the conversion 
of  plasminogen to plasmin, an important molecule 
in fibrinolytic processes and in the activation of  
several matrix metalloproteinases, in the recycling and 
degradation of  the extracellular matrix, in cell activation, 
migration, contraction, vasculogenesis and in vitronectin 
degradation[10,28-32]. This phenomenon may occur in 
plasma, on the podocyte surface or in renal distal tubular 
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Figure 1  Differences in urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and soluble urokinase plasminogen activa-
tor receptor (modified from reference number 18). DI: Domain 1; DII: Domain 2; DIII: Domain 3. uPA: Urokinase-type plasminogen activator; suPAR: Soluble urokinase plasminogen 
activator receptor.



or distal renal tubular epithelial uPA/uPAR; at this distal 
location, plasmin has been reported to function as a regu-
lator of  water and sodium absorption, a key event in the 
pathogenesis of  edema in nephrotic syndrome, and also 
as a mediator in calcium tubular transport[17,35,36].

Cell migration across the endothelium and into tis-
sues is a critical component in inflammation, in immune 
responses against infections, and in tissue repair and re-
modeling after injury. The UPA/uPAR system is directly 
involved in these mechanisms of  adhesion, migration and 
chemotaxis[18,31]. For example, the adhesion and migration 
of  monocytes involves a functional interaction between 
cellular uPAR and matrix integrins[37] and in uPAR-depen-
dent changes in integrin-mediated adhesion to fibrinogen, 
collagen and vitronectin[10,38,39]. It is known that uPAR is 
needed to activate the integrin α5β3 in podocytes, which 
promotes cell motility and activation of  small GTPases 
that control cell division, as Cdc4240. If  α5β3 integrin is 
activated, the podocyte contracts and proteinuria ensues. 
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cells[16,17] (Figure 2).
SuPAR whole molecule ( suPARI-Ⅲ) consists of  three 

domains (DI, DⅡ and DⅢ) of  uPAR , as mentioned previ-
ously but lacks the GPI anchor protein; however, the I-Ⅲ 
portion of  suPAR can compete with uPARI-Ⅲ for Upa[33] 
(Figure 1). Another agonist of  UPAR is vitronectin, the 
main antagonist of  plasminogen activator inhibitor type-1 
(PAI-1), the most important physiological inhibitor of  tis-
sue plasminogen activator and urokinase (uPA)[10]. Thus, 
vitronectin can accomplish its adherent and fibrinolytic 
actions increasing plasminogen and plasmin levels by two 
independent pathways: blocking PAI-1 and activating 
uPAR. Furthermore, vitronectin achieves its adherent ac-
tion to the cell matrix through integrins, particularly those 
that possess the α5 domain[10]. While this point will be 
addressed below, it is worth to mention that patients with 
nephrotic syndrome present elevated serum levels of  
plasminogen and plasmin[34]. In turn, after being filtered, 
urinary plasminogen is converted to plasmin by podocyte 
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Figure 2  Potential pharmacological strategies in primary acquired focal and segmental glomerulosclerosis. Potential strategies. 1: Inhibition of soluble urokinase 
plasminogen activator receptor (suPAR) or other permeability factors secretion onto circulation or a decrease in the pool of suPAR secreting cells (immunosuppression); 2: 
suPAR or other permeability factors removal from the circulation (plasmapheresis, immunoadsorption); 3: Inhibition of uPAR activation; 4: Plasmin antagonists 5: Stabilization 
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proteins[49,50]. One can only speculate on the relationship 
between mutations and the coexistence of  podocyte 
permeability circulating factors in this setting. It may be 
that the occurrence of  both phenomena is attributable 
just to mere coincidence, or that genetic abnormalities in 
podocytes may cause subsequent structural local damage 
and inflammation inducing leukocyte stimulation via the 
uPAR, ending with the secretion of  molecules with per-
meability actions, giving rise to severe kidney recurrent 
disease[48]. 

Is there any relationship between the etiology of  
minimal change nephropathy and that of  primary fo-
cal segmental sclerosis? If  FSGS is of  genetic origin, 
the link would be none. If  chronic minimal change ne-
phropathy leads to an inflammatory state that induces 
focal sclerosis histological changes, this morphology 
would be of  secondary origin and have no connota-
tion with primary acquired FSGS. If  a causal factor it 
is to be established as a primary permeability factor in 
minimal change nephropathy, hemopexin would be the 
first candidate. Hemopexin is a protease which activates 
protein kinase B and the small GTPase RhoA (ras ho-
molog gene family, member A) and induces a nephrin-
dependent reorganization of  the actin cytoskeleton in 
cultured podocytes[51]; reduces endothelial glycocalyx and 
increases the albumin diffusion through glomerular en-
dothelial cell monolayers[51]. Hemopexin injection in rats 
causes proteinuria and glomerular changes characteristic 
of  minimal change nephropathy[48,52]. Another candidate 
is vascular permeability factor (VPF). VPF is a lympho-
kine that is produced by T lymphocytes stimulated by 
concanavalin A of  patients with idiopathic nephrotic 
syndrome. VPF acts on systemic capillary glomerular 
basement membrane[53]. Its secretion is enhanced by 
IL-2, IL-15, IL-12, and IL-18 is inhibited by transform-
ing growth factor-β1

[54] and causes a histological damage 
identical with minimal change nephropathy[48]. Whether 
two or more factors such as the suPAR permeability can 
coexist in these situations has not been reported. Finally, 
in the early course of  idiopathic nephrotic syndrome, 
histological changes may not be present even at the 
ultrastructural level, in turn making more problematic 
and difficult the distinction between minimal change ne-
phropathy and primary FSGS. The histology of  primary 
FSGS caused by a permeability factor compared to that 
caused by a mutation (podocytopathy) is indistinguish-
able at early stages, although in the latter focal ultrastruc-
tural microscopic damage may be seen first. Moreover, 
none of  the permeability factors mentioned in the case 
of  minimal change nephropathy or FSGS are currently 
measured in clinical grounds. In the future, samples of  
blood or urine may be part of  a diagnostic panel.

Treatment of FSGS
As to treatment, to date no randomized controlled tri-
als of  sufficient numbers of  patients are available to 
provide robust information so as to guide us in the 
treatment of  primary FSGS in native kidneys or in re-
nal allografts. Current treatment results in complete or 
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However, it is believed that suPAR has inhibitory proper-
ties on adhesion uPAR dependent migration but not on 
cell contraction. Thus, it would be able to interact with 
α5β3 integrin, vitronectin or plasmin[18,40]. Finally, it has 
been shown that suPARⅡ-Ⅲ is a chemotactic agent[41,42], 
and its circulating levels reflect the activation status of  
the immune system[18]. 

suPAR and the pathophysiology of FSGS
Abnormally high circulating levels of  suPAR have been 
associated with the pathogenesis of  acquired primary 
FSGS, since approximately two thirds of  patients with 
acquired FSGS have increased circulating levels of  su-
PAR[6]; suPAR would then bind to and activate α5β3 
integrin in podocytes by a lipid-dependent mechanism[16], 
leading to alterations in the morphology and dynamics 
of  the metabolism of  podocytes and foot process ef-
facement, detachment and podocyturia, finally resulting 
in proteinuria and the beginning of  glomerulosclerosis, 
nephrotic syndrome and renal insufficiency[16,43].

What is the cellular origin of  this increased membrane 
uPAR and circulating suPAR in FSGS? Wei et al[16] sug-
gest that neutrophils and monocytes may be culprits, but 
another possibility lies in circulating lymphocyte T cells, 
since there is an association between T-cell activation and 
systemic proteinuria. In turn, as mentioned previously, 
not in all cases of  idiopathic acquired FSGS circulating 
levels of  suPAR have been increased. This is another 
confirmation that the mere histologic FSGS description 
is not a disease but a form of  kidney damage character-
ized by common histopathological features but with 
completely different pathophysiological pathways. Even 
within the primary FSGS scenario, and even more, within 
the primary FSGS circulating factors, more than one 
peptide may cause damage to the glomerular basement 
membrane. In this regard, other described permeability 
factors are angiopoetin-4 and vascular endothelial growth 
factor (VEGF), both secreted by the podocyte, operat-
ing in autocrine or paracrine fashions[43-45]. In addition, 
plasma and urinary levels of  CD80 from T cells due to a 
lymphocyte-podocyte interaction, are elevated in primary 
acquired FSGS; CD80 could potentially contribute to the 
diagnosis and serve as a potential marker of  damage in 
FSGS, being another potential tool to help distinguish 
clinically primary FSGS from minimal change nephropa-
thy at the initial steps of  the disease. In minimal change 
nephropathy, hemopexin may be the main permeability 
factor[46,47]. Another molecule that has been identified in 
primary acquired recurrent FSGS is CLC-1 (cardiotrophin 
type-1 cytokine), a member of  the family of  interleukin 
(IL)-6, and which is present in the plasma of  patients 
with active disease. CLC-1 decreases the expression of  
nephrin in glomeruli and cultured podocytes, and CLC-1 
concentration in the circulation of  patients with recur-
rent FSGS can be up to 100 times higher than in normal 
subjects[48]. To make matters more difficult to understand 
in primary acquired FSGS, suPAR activity has been iden-
tified in recurrence after kidney transplantation in some 
patients with concomitant genetic mutations in podocyte 
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the podocyte contraction abrogated[66]. Salomon et al 
found cyclosporine trough levels between 250 and 300 
ng/mL suffice to obtain a rapid remission in proteinuria 
(average intravenous dose 3 mg/kg per day)[67], although 
the treatment is generally cyclosporine-dependent and 
may lead to chronic renal damage[68-70]. Rituximab may be 
another option in refractory cases, not only due to its ac-
tion by decreasing the population of  CD20 lymphocytes, 
but also because it would bind other podocyte molecules 
as protein SMPDL-3b (sphingomyelin phosphodiesterase 
acid-like 3b). In primary FSGS, this molecule (acting on 
the remodeling of  podocyte actin) is decreased. Ritux-
imab levels would increase SMPDL-3b concentrations, 
stabilizing the podocyte[71]. 

Novel aspects with potential targets
A recent study has shown that podocyte uPAR expres-
sion can be reduced using amiloride. Amiloride plays 
a significant role in reducing podocyte cell motility in 
vitro and proteinuria in mice[72]. Amiloride inhibits the 
synthesis of  uPAR and uPAR mRNA and consequently 
the α5β3 integrin activation mediated by uPAR. The 
reduced uPAR pool would translate in a lower suPAR 
concentration. Amiloride capacity to inhibit uPAR syn-
thesis and suPAR secretion by T lymphocytes should be 
of  particular interest in FSGS, because blocking their 
activation would inhibit α5β3 integrin activation and 
the development of  proteinuria with final renal dysfunc-
tion[16,73]. Furthermore, amiloride may further decrease 
proteinuria by acting on the distal nephron in ENaC 
channels, as nephrotic range proteinuria stimulates the 
activity of  these channels by promoting the reabsorption 
of  sodium and water[17]. Tubular plasmin, already high in 
patients with nephrotic syndrome, would act as the me-
diator in sodium and water reabsorption and amiloride 
may inhibit its action by blocking uPAR[17,34,72,74] (Figure 
2). This would be another additional and relevant non-
immunosuppressive strategy contributing to the fall in 
proteinuria, if  tolerated hemodynamically and no hyper-
kalemia ensues.

CONCLUSION
In summary, these observations aim to explain the possi-
bility that circulating suPAR is the most prominent factor 
in the pathophysiology of  primary acquired FSGS due to 
the encountered high levels in blood and urine, activating 
α5β3 integrin, contracting the podocyte and causing the 
proteinuria, and acting on the water and sodium reab-
sorption at the distal tubular. Moreover, it explains the 
importance of  urokinase and its receptor uPAR play in 
cell adhesion and migration, being plasmin the final ef-
fector. Whether suPAR causes a rise in plasminogen and 
plasmin levels, and the consequent final action on the 
podocyte integrins and renal distal tubular cell, in primary 
acquired FSGS both proteinuria and edema would have 
suPAR as the trigger for plasmin activation, a final effec-
tor, and amiloride as a potential novel adjunct antipro-
teinuric agent in this complex nephropathy.
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partial remissions in approximately 50% of  cases. Treat-
ment approaches that have been used to date include 
corticosteroids with or without cyclophosphamide[55,56], 
cyclosporine[57], mycophenolate[58], rituximab[59,60] and 
plasmaphresis[61,62]. When proteinuria is reduced by these 
agents or by non-specific drugs as angiotensin convert-
ing enzyme inhibitors, angiotensin Ⅱ receptor blockers, 
statins, antiaggregants and/or reduction of  salt intake, 
the progression of  renal dysfunction is slowed[63,64]. 
Regardless of  the debates that arise about the true etiol-
ogy of  nephrotic syndrome in primary FSGS, current 
and proposed therapies include strategies such as the 
identification and reversal of  the primary cause of  renal 
injury (usually not possible), the decrease in proteinuria 
by interventions related to hemodynamic factors, and re-
tarding renal fibrosis by the action of  nonspecific agents 
(Figure 2).

In a study by Wei et al[6] in which blood samples of  
164 pediatric and adult patients with primary steroid-
resistant FSGS were analyzed and suPAR concentrations 
were measured, the main conclusions arrived by the au-
thors were that circulating suPAR levels were significantly 
elevated in most patients with primary FSGS in both 
groups; 84.3% of  patients in the American cohort (CT) 
and 55.3% of  those belonging to the European group 
(PodoNet) had elevated suPAR levels; high suPAR levels 
were not associated with systemic inflammatory phenom-
ena according to C-Reactive Protein titers as did not dif-
fer from controls, treatment with mycophenolate/dexa-
methasone was associated with lower circulating suPAR 
levels in comparison to those treated with cyclosporine 
A; a sustained decrease in suPAR levels over the course 
of  26 wk of  treatment was associated with a reduction 
in proteinuria and more likely to accomplish complete 
remission; suPAR serum levels were higher in the familial 
cases, including those with a genetic disorder, as in the 
diagnosis of  a podocin mutation (podocytopathy in co-
existence with elevated suPAR levels)[6]. The fact that in 
15%-45% of  patients in both groups had normal levels 
of  suPAR shows that primary FSGS is a heterogeneous 
disorder which additional factors contributing to the re-
nal damage and to proteinuria. It is possible that patients 
with primary FSGS express higher levels of  suPAR in 
response to a certain pathological stimulus with indepen-
dent features or related to a primary inflammatory insti-
gator[6].

An agreed cut-off  level of  suPAR is another con-
troversial issue. Gao et al[65] proposed 3000 pg/mL as 
the cut-off  level for the population with primary FSGS, 
since in a previous study of  a normal population the cut-
offs level was set at 2710 pg/mL. As therapies, chronic 
plasmapheresis and plasma adsorption of  suPAR are sup-
porting treatments that can help maintain normal suPAR 
blood levels, which would lead to lower podocyte dam-
age and partial resolution of  nephrotic syndrome with a 
possible slowing of  progression to renal failure[61,62]. Cy-
closporine may be useful to stabilize the podocyte by in-
hibiting synaptopodin dephosphorylation; therefore, syn-
aptopodin interaction with actin would be blocked, and 
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