# **Case Report**



Nephron 1999;82:274-277

Accepted: January 28, 1999

# Hyponatremia-Associated Rhabdomyolysis

Hernan Trimarchi<sup>a</sup> Juan Gonzalez<sup>b</sup> Juan Olivero<sup>b</sup>

<sup>a</sup>Servicio de Nefrología y Hemodiálisis, Hospital Británico de Buenos Aires, Argentina; <sup>b</sup>Nephrology Section, Department of Medicine, Baylor College of Medicine, Houston, Tex., USA

# Key Words

Hyponatremia · Rhabdomyolysis · Thiazide diuretics · Creatine phosphokinase · Myoglobin · Myoglobinuria

# Abstract

Background: Hyponatremia is the most frequent electrolyte disorder. However, hyponatremia rarely results from excessive water intake, unless the kidney is unable to excrete free water, such as in patients on thiazide diuretics; in addition, hyponatremia is an uncommon cause of rhabdomyolysis. Methods: We present a 51-year-old hypertensive woman on chronic hydrochlorothiazide therapy who developed acute water intoxication and severe myalgias. Results: The patient developed acute hypotonic hyponatremia and subsequent rhabdomyolysis. We discuss the mechanisms responsible for the development of hyponatremia and its association with rhabdomyolysis. Conclusion: Muscle enzymes should be monitored in patients with acute hyponatremia who develop muscle pain, and hyponatremia-induced rhabdomyolysis must be considered in patients with myalgias receiving thiazide diuretics.

## Introduction

Hyponatremia, defined as a plasma sodium level <130 mEq/l, is the most common disorder of body fluid and electrolyte balance encountered in clinical practice with an incidence of 1-2% in hospitalized patients [1, 2]. However, hyponatremia is a rare cause of rhabdomyolysis, and, to our knowledge, only 24 cases have been reported [3–15].

We present a case with hypotonic hyponatremia and subsequent development of rhabdomyolysis. We also reviewed the previous reported cases of hyponatremia and rhabdomyolysis and discuss the possible pathogenetic mechanisms.

#### **Case Report**

A 51-year-old Caucasian hypertensive woman was admitted because of weakness and light-headedness. Four days prior to admission, she started with diarrhea and frequent episodes of nausea, for both of which she was advised to force fluid intake. Thereafter, she drank at least ten glasses of water daily; however, her symptoms worsened, requiring hospitalization. Daily medication included hydrochlorothiazide 25 mg/day; she denied tobacco use and alcohol intake. Physical examination revealed an oriented woman with orthostatic hypotension (blood pressure 105/80 mm Hg supine; 80/ 50 mm Hg erect), heart rate 100 beats/min, respiratory rate 16/minute, afebrile. Skin and mucous membranes were dry, and the rest of the physical examination was unremarkable.

# KARGER

Fax + 41 61 306 12 34 E-Mail karger@karger.ch www.karger.com © 1999 S. Karger AG, Basel 0028-2766/99/0823-0274\$17.50/0

Accessible online at: http://BioMedNet.com/karger Dr. Hernan Trimarchi Hospital Británico de Buenos Aires Servicio de Nefrología Perdriel 74 1280 Buenos Aires (Argentina) Chest X-ray was normal; an electrocardiogram revealed sinus tachycardia; sodium 115 mEq/l; potassium 3.3 mEq/l; plasma osmolality 260 mosm/kg; urine osmolality 884 mosm/kg; urine analysis showed specific gravity 1.010, pH 7.5; urinary sodium 1 mEq/l; urinary potassium 74 mEq/l. Additional laboratory data are summarized in table 1.

Intravenous infusion containing 0.9% sodium chloride with 20 mmol/l potassium chloride was started at a rate of 100 ml/h, accompanied by oral fluid restriction. On the 3rd day, the patient developed worsening myalgias; the intravenous infusion rate was reduced to 85 ml/h with discontinuation of potassium. One day later, her blood pressure normalized, but myalgias worsened, predominantly affecting the lower extremities. The creatine phosphokinase level was 21,285 U/l; plasma myoglobin was 179  $\mu$ g/l; urinary myoglobin was 15.2  $\mu$ g/day; a serum protein electrophoresis displayed a moderate decrease in serum proteins; a human immunodeficiency virus test was negative; thyroid-stimulating hormone and complement levels were within normal limits. Her myalgias progressively and spontaneously improved, and by the 12th day, she was discharged.

## Discussion

Our patient presented with hypotonic hyponatremia. This condition can be classified into three main categories. First, disorders in which there is a deficit of totalbody water and a larger deficit of total-body sodium, i.e., volume depletion, including diuretic intake, mineralocorticoid deficiency, vomiting, and diarrhea, among others. Second, disorders of excess total-body water, such as inappropriate secretion of vasopressin. Third, disorders of excess total-body sodium and larger excess of total-body water (nephrotic syndrome, cirrhosis, cardiac failure, renal failure) [16].

Hyponatremia rarely occurs after water intake, due to the high efficiency of the normal kidney in excreting free water. However, when it is impaired, i.e., by thiazide therapy, renal insufficiency, hypothyroidism, cortisol deficiency, or inappropriate secretion of vasopressin, excessive water intake results in hyponatremia [17].

In our patient, several factors contributed to the development of hyponatremia: thiazide therapy, hypotension, nausea, and exaggerated water intake. Chronic thiazide diuretic therapy is a common cause of hyponatremia. Unlike loop diuretics, these agents act in the distal nephron and, therefore, do not dissipate medullary tonicity; thus, vasopressin-induced water retention is not modified. Additional factors that predispose to hyponatremia are chronic natriuresis and bodily potassium deficit. Older women are known to be at higher risk of thiazideinduced hyponatremia [18] and to have a tendency to increased water intake [19].

#### Table 1. Selected laboratory values

| Blood results             | Time, days |        |        |        |         |  |  |
|---------------------------|------------|--------|--------|--------|---------|--|--|
|                           | 1          | 2      | 4      | 5      | 12      |  |  |
| Na, mEq/l                 | 115        | 119    | 122    | 129    | 137     |  |  |
| K, mEq/l                  | 3.3        | 5.5    | 6.2    | 5.4    | 3.4     |  |  |
| Cl, mEq/l                 | 81         | 89     | 98     | 98     | 99      |  |  |
| HCO <sub>3</sub> , mEq/l  | 31         | 22     | 20     | 26     | 27      |  |  |
| Ca, mg/dl                 | 9.2        | 9.2    |        | 9.1    | 9.2     |  |  |
| P, mg/dl                  | 3.5        | 3.7    |        | 4.9    | 4.4     |  |  |
| Mg, mg/dl                 | 2.1        | 2.1    |        | 2.1    | 2.1     |  |  |
| Hct, %                    | 51         | 47     |        |        | 33      |  |  |
| WBC/mm <sup>3</sup>       | 12.3       | 13.3   |        |        | 12.0    |  |  |
| Platelets/mm <sup>3</sup> | 263,000    | 19,100 |        |        | 410,000 |  |  |
| Albumin, g/l              | 6.3        | 6.2    |        | 2.3    | 3.9     |  |  |
| CPK, U/l                  |            |        | 21,285 | 20,899 | 2,228   |  |  |
| Urea, mg/dl               | 11         | 16     | 27     | 15     | 9       |  |  |
| Creatinine, mg/dl         | 0.8        | 0.8    | 0.6    | 0.5    | 0.6     |  |  |
| Uric acid, mg/dl          | 3          |        |        | 3      |         |  |  |
| Glucose, mg/dl            | 149        |        | 124    | 108    | 104     |  |  |

Na = Sodium; K = potassium; Cl = chloride;  $HCO_3$  = bicarbonate; Ca = calcium; P = phosphorus; Mg = magnesium; Hct = hematocrit; WBC = white blood cells; CPK = creatine phosphokinase.

In our case, diuretic intake led to volume depletion; physical findings, high hematocrit, elevated albumin, metabolic alkalosis, and low urinary sodium support such impression. Hypovolemia, severe enough to cause hypotension, even in the presence of a low plasma osmolality, stimulates the sympathetic nervous system and vasopressin secretion [16, 20]. Baroreceptors in the carotid sinus mediate vasopressin release [21]. Moreover, thirst is stimulated by angiotensin II, also increased due to volume contraction [22], and, if water intake is exaggerated or not accompanied by salt intake, hyponatremia ensues. Finally, hyponatremia caused nausea, an independent potent stimulus to vasopressin release [23].

Metabolic alkalosis on admission could be explained by volume contraction and diuretic use. As in our patient, in an initial volume-contracted state, hyperuricemia and high urea levels were not present, this phenomenon could be due to increased uricosuria [24] and the urinary urea wasting [25] that follows the volume-expanded state that developed after excessive water intake and the intravenously administered solution during hospitalization. This effect is presumably due to vasopressin, mediated through  $V_1$  receptors [26]. The low urinary sodium level can be attributed to volume depletion and diminished total-body sodium.

Hyponatremia-Associated Rhabdomyolysis

Nephron 1999;82:274-277

 Table 2. Previous reported cases of hyponatremia-induced rhabdomyolysis (in chronological order)

| Authors                                 | Year of publication | States and the ar | Etiology of<br>hyponatremia                         | Onset of CPK peak levels, h | Outcome        |
|-----------------------------------------|---------------------|-------------------|-----------------------------------------------------|-----------------------------|----------------|
| Di Bona and Morens [5]                  | 1977                | 1                 | influenza A                                         | 120                         | recovery       |
| Browne [6] <sup>a</sup>                 | 1979                | 1                 | psychogenic polydipsia                              | 36                          | reversible ARF |
| Adler [7]                               | 1980                | 1                 | benzodiazepines                                     | 72                          | reversible ARF |
| Mor et al. [8]                          | 1987                | 1                 | psychogenic polydipsia,<br>benzodiazepines          | not reported                | not reported   |
| Cronin [9] <sup>a</sup>                 | 1987                | 11                | psychogenic polydipsia,<br>alcohol                  | not reported                | recovery       |
| Alamartine et al. [10]                  | 1987                | 1                 | loop diuretics,<br>spironolactone                   | not reported                | recovery       |
| Mitnick and Bell [11]                   | 1990                | 1                 | prostate surgery                                    | 96                          | recovery       |
| Tomiyama et al. [4]                     | 1990                | 1                 | psychogenic polydipsia,<br>alcohol, benzodiazepines | 96                          | recovery       |
| Putterman [3] <sup>a</sup>              | 1993                | 1                 | psychogenic polydipsia, physical exertion           | 72                          | recovery       |
| Egan et al. [12]                        | 1994                | 1                 | Addison's disease                                   | not reported                | recovery       |
| Fernandez-Real et al. [13] <sup>a</sup> | 1994                | 2                 | benzodiazepines                                     | 48                          | recovery       |
| Rizzieri [14]                           | 1995                | 1                 | psychogenic polydipsia                              | 48                          | recovery       |
| Korzets et al. [15] <sup>a</sup>        | 1996                | 1                 | psychogenic polydipsia                              | 48                          | recovery       |

CPK = Creatine phosphokinase; ARF = acute renal failure.

<sup>a</sup> Hypokalemia also present.

In this setting of volume depletion, vasopressin is released; nevertheless, water can be retained by independent mechanisms of vasopressin. It is seen in elderly people, in whom the ability to excrete a water load is impaired, and is more prevalent among those who have previously developed thiazide-induced hyponatremia; decreased prostaglandin synthesis is involved [27].

Hyponatremia has been reported as a cause of rhabdomyolysis, presumably because of the hypo-osmolality of the extracellular fluid, leading to cell swelling [3, 28]. After several hours, cellular swelling is reduced, and the volume normalizes, as a result of extrusion of intracellular potassium causing increased blood flow to the area [29, 30]. Potassium-depleted muscle cells fail to release potassium, and blood flow becomes insufficient. Furthermore, in potassium-deficient cells, the cellular transmembrane potential is decreased, leading to rhabdomyolysis and release of creatine phosphokinase and myoglobin and subsequent myoglobinuria [30]. Noteworthy, of the 24 reported cases of hyponatremia-induced rhabdomyolysis, 12 had coexisting hypokalemia [3, 6, 9, 13, 15] (table 2), and, as in our case and these previously reported ones, potassium depletion could have certainly played an

additional role in the development of rhabdomyolysis. In our patient, creatine phosphokinase blood levels were measured 4 days after presentation, when important myalgias developed, and we regrettably lack previous levels. As previously stated, a delayed creatine phosphokinase peak level could suggest hyponatremia as a possible etiologic factor for rhabdomyolysis [4]. Our patient developed anemia, thrombocytopenia, and leukocytosis (table 1), features previously associated with rhabdomyolysis [31, 32].

In our patient, rhabdomyolysis was not followed by acute renal failure which complicates 30% of the cases of rhabdomyolysis of other etiologies, although the exact mechanism remains unclear [28]. Excessive water intake and intravenous fluid administration could have played a protective role, since hypovolemia predisposes to pigment-induced tubular necrosis [33].

In summary, we present a patient with a history of chronic thiazide intake and volume depletion. After forcing water intake, she became hyponatremic. Hyponatremia was further complicated by rhabdomyolysis, as creatine phosphokinase and plasma and urinary myoglobin levels were elevated. Thiazides should be avoided in

Nephron 1999;82:274-277

elderly individuals, but, if indicated, patients should be instructed to limit their fluid intake. Finally, we emphasize the need to monitor muscle enzymes in hyponatremic patients if muscle weakness or pain develop [3].

### Acknowledgements

We thank Dr. Horacio Adrogue for his comments and Dr. Barry Hyman for referring the patient to us.

#### References

- 1 Anderson R: Hospital-associated hyponatremia. Kidney Int 1986;29:1237–1247.
- 2 Anderson R, Chung H, Kluge R, Schrier R: Hyponatremia: A prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann Intern Med 1985;102:164–168.
- 3 Putterman C, Levy L, Rubinger D: Transient exercise-induced water intoxication and rhabdomyolysis. Am J Kidney Dis 1993;21:206– 209.
- 4 Tomiyama J, Kametani H, Kumagai Y, et al: Water intoxication and rhabdomyolysis. Jpn J Med 1990;29:52–55.
- 5 Di Bona F, Morens D: Rhabdomyolysis associated with influenza A. J Pediatr 1977;91:943– 945.
- 6 Browne P: Rhabdomyolysis and myoglobinuria associated with acute water intoxication. West J Med 1979;130:459-461.
- 7 Adler S: Hyponatremia and rhabdomyolysis: A possible relationship. South Med J 1980;73: 511–513.
- 8 Mor F, Mor-Snir I, Wysenbeek A: Rhabdomyolysis in self-induced water intoxication. J Nerv Ment Dis 1987;175:742–745.
- 9 Cronin R: Psychogenic polydipsia with hyponatremia: Report of cleven cases. Am J Kidney Dis 1987;9:410-416.
- 10 Alamartine E, Gerard M, Boyer F, Robert D: Repeated rhabdomyolysis caused by hyponatremia. Presse Méd 1987;16:490–491.
- 11 Mitnick P, Bell S: Rhabdomyolysis associated with severe hyponatremia after prostatic surgery. Am J Kidney Dis 1990;16:73–75.
- 12 Egan J, Davies A, Jones M: Hyponatremic rhabdomyolysis in Addison's disease. Postgrad Med J 1994;70:830–832.

- 13 Fernandez-Real J, Ricart-Engel W, Camafort-Babkowski M: Hyponatremia and benzodiazepines result in rhabdomyolysis. Ann Pharmacother 1994;28:1200–1201.
- 14 Rizzieri D: Rhabdomyolysis after correction of hyponatremia due to psychogenic polydipsia. Mayo Clin Proc 1995;70:473–476.
- 15 Korzets A, Ori Y, Floro S, Ish-Tov E, Chagnac A, Weinstein T, Zevin D, Gruzman C: Severe hyponatremia after water intoxication: A potential cause of rhabdomyolysis. Am J Med Sci 1996;312:92–94.
- 16 Berl T, Anderson R, McDonald K, Schrier R: Diagnostic and therapeutic approach to the hyponatremic patient. Kidney Int 1976;10:117– 132.
- 17 Kleeman CR: Hypoosmolar syndromes secondary to impaired water excretion. Annu Rev Med 1990;29:52–55.
- 18 Sonneblick M, Friedlander Y, Rosin A: Diuretic-induced severe hyponatremia: Review and analysis of 129 reported patients. Chest 1993; 103:601-612.
- 19 Friedman E, Shadel M, Halkim H, Farfel Z: Thiazide-induced hyponatremia: Reproducibility by single dose challenge and an analysis of pathogenesis. Ann Intern Med 1989;110:24– 30.
- 20 Baylis PH: Osmoregulation and control of vasopressin secretion in healthy humans. Am J Physiol 1987;253:R671.
- 21 Anderson R, Cadnapaphornchai P, Harbottle J, et al: Mechanisms of effect of thoracic inferior vena cava constriction on renal water excretion. J Clin Invest 1974;54:1473–1479.
- 22 Mann J, Johnson A, Ritz E, Ganten D: Thirst and the renin-angiotensin system. Kidney Int 1987;32(suppl 21):27–32.
- 23 Editorial: Nausea and vasopressin. Lancet 1991;337:1133.
- 24 Beck L: Hypouricemia in the syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med 1979;301:528.

- 25 Decaux G, Genette F, Mockel J: Hypouremia in the syndrome of inappropriate secretion of antidiuretic hormone. Ann Intern Med 1980; 93:716-717.
- 26 Decaux G, Namias B, Gulbis B, Soupart A: Evidence in hyponatremia related to inappropriate secretion of antidiuretic hormone that V1 stimulation contributes to the increase in renal uric acid clearance. J Am Soc Nephrol 1996;7:805–810.
- 27 Clark B, Shannon R, Rosa R, Epstein F: Increased susceptibility to thiazide-induced hyponatremia in the elderly. J Am Soc Nephrol 1994;5:1106–1111.
- 28 Brady H, Brenner B, Lieberthal W: Acute renal failure; in Brenner B (ed): Brenner's and Rector's The Kidney. Philadelphia, Saunders, 1996, p 1206.
- 29 Wade C, Dressendorf R, O'Brien J, et al: Renal function, aldosterone, and vasopressin excretion following repeated long-distance running. J Appl Physiol 1981;50:709–712.
- 30 Goldman M, Luchins D, Robertson G: Mechanisms of altered water metabolism in psychotic patients with polydipsia and hyponatremia. N Engl J Med 1988;318:397–403.
- 31 Sherry P: Sickle cell trait and rhabdomyolysis: Case report and review of the literature. Mil Med 1990;155:59–61.
- 32 Storti E: Generalized hemorrhagic diathesis and anemia of sudden onset caused by rhabdomyolysis, diagnosed as acute leukosis. Recenti Prog Med 1990;81:152–157.
- 33 Garcia G, Sneider T, Feldman C, Clyne D: Nephrotoxicity of myoglobin in the rat: Relative importance of urine pH and prior dehydration (abstract). Kidney Int 1981;19:200.

Nephron 1999;82:274-277

277